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Parameter evaluation from time sequences using chaos synchronization
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Unknown parameters in nonlinear equations are estimated from chaotic time sequences using chaos syn-
chronization. The method is based on a random optimization method. The parameters are randomly searched
for in a sequential manner as the degree of the chaos synchronization is increased. The method is applied for
the parameter evaluation in the Lorenz equation and the Lang-Kobayashi model for the chaotic semiconductor
laser.
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Chaos appears in time evolutions of some kinds of n
linear equations. It is an inverse problem to predict a g
erning nonlinear equation from the chaotic time sequen
This inverse problem is important but in general very dif
cult @1#. If the form of the governing nonlinear equation
assumed, the inverse problem is reduced to a simpler p
lem to evaluate parameters in the nonlinear equation f
the chaotic time sequences. There are many attempts fo
parameter estimation in ordinary differential equations a
partial differential equations@2,3#. These methods are mainl
based on the regression analysis between the tempora
rivatives of the state variables and some polynomials of
variables and their spatial derivatives. We propose ano
method to estimate the parameters using chaos synchro
tion and a random optimization method. The temporal
rivatives of the state variables are not necessary in this
rameter estimation method.

We assume a nonlinear equation subject to a chaotic f
x0(t).

dx

dt
5f~x,$a%!1D~x02x!, ~1!

whereD(x02x) denotes a coupling term and$a% denotes a
parameter set of the nonlinear equation. Ifx0 obeys the same
form of nonlinear equation:

dx0

dt
5f~x0 ,$a0%!, ~2!

with the same parameter set$a0%5$a%, the chaotic time se-
quencex(t) is expected to be synchronized by the exter
forcex0(t) for D.Dc . The synchronization has been inte
sively studied in chaotic systems@4–6#. If the parameter
values $a% of the assumed equation are different from t
original parameter values$a0%, the complete synchronizatio
cannot occur, however, the differenceux2x0u is expected to
be small, if the difference of the two parameter sets is sm
and D is sufficiently large. We measure the degree of
chaos synchronization by the difference of the two time
quences. We search for the parameter values$a0% of the
nonlinear equation with a random optimization method,
the degree of the chaos synchronization becomes strong
the perfect chaos synchronization is attained, the obta
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parameter values are expected to be the desired param
for the nonlinear equation which generates the chaotic
quence.

Our algorithm for the random optimization is such that

~1! We assume a nonlinear equation with a parameter
$a%. We also perform a numerical simulation of Eq.~1! with
the chaotic force term and the coupling term with sufficien
largeD.

~2! We calculate the difference of the two time sequen
such as

U5E
0

T

ux2x0u2dt.

~3! Each parametera in the parameter set$a% is randomly
modified as

a85a1r ,

wherer is a random number which obeys the Gaussian d
tribution with small but fixed variances. We perform a nu-
merical simulation of Eq.~1! with the modified parameter se
$a8% and obtain a time sequencex8(t).

~4! The difference of the two time sequences is calcula
as

U85E
0

T

ux82x0u2dt.

for the randomly modified values of the parameter set.
~5! If the differenceU8 is smaller thanU, the parameter

set is changed from$a% to $a8%. On the other hand, if the
difference U8 is larger thanU, the parameter set is un
changed and kept to be$a%.

~6! The processes~1!–~5! are repeated until the differenc
U becomes sufficiently small. This is a kind of random o
timization method and is similar to the Metropolis meth
with temperature 0@7,8#. Similar optimization methods were
used for more complicated problems such as neural netw
models and the traveling salesman problem@9,10#. If there
are many local minima inU as a function of parameters,
may be better to include some stochastic processes as
©2002 The American Physical Society01-1



in
r

am
L

ib
t

a-
nz

ao

e
y
-

f

imi-
dom

s-

a
, the
es

a

of

BRIEF REPORTS PHYSICAL REVIEW E 65 027201
Metropolis method with finite temperature. We have not
cluded such additional stochastic processes in this pape
the sake of simplicity.

We have applied the above algorithm to estimate par
eters in some model equations. The first example is the
renz equation@11#. The model equation is

dx

dt
5a~2x1y!1D@x0~ t !2x#,

dy

dt
52xz1cz2y,

dz

dt
5xy2bz, ~3!

wherea, b, and c are the unknown parameters andD is a
coupling constant. Many types of coupling terms are poss
for the chaos synchronization, but we have assumed
above form of coupling for the sake of simplicity. The ch
otic time sequencex0(t) was generated by the same Lore
equation witha5105a0 , b58/35b0 , andc5285c0 . Di-
rect numerical simulations show that the complete ch
synchonizationx(t)5x0(t) occurs for D.Dc57.95 at a
510, b58/3, andc528 in the forced Lorenz Eq.~3!.

The differenceU was numerically calculated as*0
T@x(t)

2x0(t)#2dt for a510,b58/3, andT540 by changingc and
D. The integral timeT is larger than a typical period of th
chaotic oscillation in the Lorenz equation. Figure 1 displa
the averaged value ofU with respect to many time se

FIG. 2. Time evolution ofa, b, andc by the random optimiza-
tion process for the Lorenz chaos.

FIG. 1. DegreeU of the chaos synchronization as a function
c andD for the Lorenz equation.
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quences. The differenceU takes a minimum value 0 atc
5c0 for D515 and 9, since the coupling constantD is above
the critical value 7.95. AsD is increased from 7, the value o
U at c5c0528 is decreased and becomes 0 forD.Dc
57.95. The pointc5c0 is a local minimum point forD
59 and 7, that is,c is expected to approachc0 , if the initial
value ofc is chosen to be close toc0 and the above random
optimization process is applied. ForD55, there is no defi-
nite local minimum point in the range@10,40#, therefore,c is
expected to decrease in a monotonic manner in the opt
zation process. These results suggest that the above ran
optimization may succeed in obtaining the parameterc0 , if
the coupling constantD is sufficiently large.

We have searched for three parametersa0 , b0 , and c0
with the random optimization method. The variances of the
Gaussian distribution for the random modification is a
sumed to be 0.01 fora, b, andc. The initial values ofa, b,
andc area53, b51, andc55. The Lorenz equation has
stable stationary solution at the parameter values, that is
initial values are sufficiently apart from the parameter valu

FIG. 3. ~a! Time evolution ofa, b, andc by the random optimi-
zation process with noisy signals for the Lorenz equation.~b! Time
evolution ofa, b, c, andd by the random optimization process for
generalized Lorenz equation.

FIG. 4. Chaotic time sequence of powerP05E0
2(t) for the

Lang-Kobayashi equation atk0530 ns21 andJ52.7431017.
1-2
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of a0 , b0 , andc0 . We have checked that the optimizatio
method is successful for several other initial values ofa, b,
andc. The differenceU of the two time sequencesx(t) and
x0(t) is calculated asU5*0

T@x(t)2x0(t)#2dt with T540.
The differenceU does not take a constant value even
fixed values ofa, b, and c, since the time sequences a
chaotic. A kind of additional stochasticity is naturally in
cluded in the random optimization process. Figure 2 displ
the time evolution ofa, b, and c. The desirable paramete
values are obtained and nearly perfect chaos synchroniza
is attained after 11 000 steps. The parameter values a
15 000th step arec528.001,a59.997, andb52.667.

We have checked the robustness of this optimizat
method with several simulations. The input signalx0(t) is
perturbed by some noises in some cases. We have perfo
the optimization algorithm in the case of noisy signals. T
input signalx0(t) is assumed to be a chaotic time sequen
by the Lorenz equation witha0510, b058/3, andc0528
overlapped with the Gaussian white noise of variance 1. F

FIG. 5. Time evolution ofk ~a!, J ~b!, andU ~c! by the random
optimization process for the Lang-Kobayashi model.
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ure 3~a! displays the time evolution ofa, b, and c. After
11 000 steps, the parameters are close to the desirable v
and are slightly fluctuating around the desirable valuesa0 ,
b0 , andc0 . It implies that the optimization method is appl
cable for the noisy signals.

We have assumed the exact form of the Lorenz equa
in the former simulation. If we do not know the exact for
of the equation, we prepare some additional terms at firs
the parameters of the additional terms become 0 in the
cess of the optimization, the exact form of the equation
recovered. We have performed the optimization method fo
generalized Lorenz equation. The input signalx0 is generated
by the Lorenz equation witha0510, b058/3, andc0528.
We assume a generalized Lorenz equation with the forc
term

dx

dt
5a~2x1y!1dz1D@x0~ t !2x#,

dy

dt
52xz1cz2y,

dz

dt
5xy2bz, ~4!

wheredz is an additional term. The initial parameter valu
are a53, b51, c55, andd55. The time evolution of the
parameter values is displayed in Fig. 3~b!. The parameterd
for the additional term becomes 0 and the exact Lorenz eq
tion is recovered after 15 000 steps.

We have applied the above method to the Lan
Kobayashi model@12#. The Lang-Kobayashi equation is
model for the semiconductor lasers. Chaotic output appe
by the optical feedback in this model equation. The cont
of chaotic semiconductor lasers and the information tra
mission using laser systems are considered to be promi
for the application of the chaotic dynamics@13#. The model
equation is written as

dE0

dt
5 1

2 $GN@N0~ t !2Ns#2gc%E0~ t !1k0E0~ t2t!cos@f0~ t !

2f0~ t2t!1v0t#,

df0

dt
5 a

2 $GN@N0~ t !2Ns#2gc%2k
E0~ t2t!

E0~ t !
sin@f0~ t !

2f0~ t2t!1v0t#,

dN0

dt
5J02gNN0~ t !2GN@N0~ t !2Ns#E~ t !2, ~5!

whereE0 is the amplitude of the electrical field,f0 is the
phase of the electrical field,N0 is the carrier number inside
the cavity,GN is the gain parameter,a is the linewidth en-
hancement factor,gc is the decay constant ofE by the pho-
ton life time,k0 is the feedback coefficient,t is the external
cavity roundtrip time,v0 is the angular frequency of th
1-3
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wave, Ns is the carrier number at transparency,gN is the
decay constant for the carrier,J05I 0 /e is the generation rate
of the carrier by the bias currentI and the bias currentI is a
control parameter. The parameter values are assumed in
numerical simulation to beGN51.531028 ps21, a55, gc
5500 ns21, k0530 ns21, t50.3 ns, v0;1.23103 ps21,
Ns51.53108, andgN50.5 ns21. Figure 4 is a chaotic time
sequence atI 544 mA. Assuming that we do not know th
parameter values ofJ and k, we search for the paramete
values ofJ andk with the random optimization method. Th
model equation with chaotic forcing terms is written as

dE

dt
5 1

2 $GN@N~ t !2N0#2gc%E~ t !1kE~ t2t!cos@f~ t !

2f~ t2t!1v0t#1D@E0~ t !2E~ t !#,

df

dt
5

a

2
$GN@N~ t !2N0#2gc%2k

E~ t2t!

E~ t !
sin@f~ t !

2f~ t2t!1v0t#1D@f0~ t !2f~ t !#,

dN

dt
5J2gNN~ t !2GN@N~ t !2N0#E~ t !21D@N0~ t !2N~ t !#,

~6!
s

tt

02720
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where all components are coupled and the coupling cons
D5500 ns21, andE0(t), f0(t), andN0(t) are chaotic time
sequences which obey Eq.~5!. Complete synchronization oc
curs atJ5J0 andk5k0 for the coupling constant. We hav
measured the degree of chaos synchronization asU
5*0

T@E0(t)2E(t)#2dt with T51.2 ns. The random optimi
zation method is applied for this model. The initial valu
were set to bek520 ns21 andJ5231017 s21. Figures 5~a!
and 5~b! display the time evolution ofk and J. Figure 5~c!
displays the time evolution of the distanceU. The desirable
parametersk0530 ns21 andJ52.7431017 s21 are obtained
in this simulation.

In summary, we have proposed a random optimizat
method using chaos synchronization to evaluate parame
in nonlinear equations, and demonstrated the validity of
method with the Lorenz equation. We have checked the
bustness of the method for the Lorenz equation. Even
some noises are overlapped to the chaotic signals, the pa
eter estimation is possible. Even if we do not know the ex
form of the equation, the additional parameter becomes z
in the optimization process and the desirable equation ca
recovered. We have applied the method to the La
Kobayashi model for the chaotic semiconductor laser, wh
may be important for the application of the chaotic dyna
ics.
.
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